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Abstract

In this study, we extended the distributed-Lagrange-multiplier/fictitious-domain (DLM/FD) formulation of Glowin-

ski et al. [Int. J. Multiphase Flow 25 (1999) 755] for the fluid/rigid-body interactions to deal with the fluid/flexible-body

interactions by replacing Newton�s equations of motion for the rigid body with the continuum equations for the general

solid material. Similar to the rigid-body case where the DLM is introduced as a pseudo body force to enforce the con-

straint of rigid-body motion of the fictitious fluid in the solid domain, the Lagrange multiplier in our formulation is to

enforce the fictitious fluid to move at the same velocity as the solid. For our computational scheme, a first-order accu-

rate fractional step scheme is employed to decouple the entire system into three sub-systems: a fluid problem, a solid

problem and a Lagrange multiplier problem; the flow problem is solved with the projection method on half-staggered

grids; the solid problem is solved with the Lagrangian finite element method and the Newton iterative method; and the

incompressibility of the material is implemented with the penalty function method. The proposed method is applied to

two typical fluid–structure interaction problems: the flow-driven oscillation of a flexible plate along the flow direction

and the self-sustained oscillation across the flow direction. Both results compare favorably with previously reported

numerical and experimental results, and show that our method is suited to the simulation of the motion of an incom-

pressible non-linear elastic material in a fluid.

� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Multiphase flows are widespread in nature and industrial applications. With the rapid development of

computer power, the direct numerical simulation (DNS), based on the Navier–Stokes equations or the dis-
crete lattice-Boltzmann equation for the solution of the fluid-flow problem, has become a practical and

important tool to probe the mechanics of multiphase flows. Over the past decade a variety of DNS methods
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have been proposed. They can be classified into two families: boundary-fitted methods and non-boundary-

fitted methods, according to whether or not the boundary-fitted mesh is used for the solution of the flow

field. For the boundary-fitted methods, the fluid flow is computed on a boundary-fitted mesh, usually with

the finite element method (FEM) [1–3], or the boundary element method (BEM) [4], and remeshing is re-

quired as the interfaces move (except BEM). For the non-boundary-fitted methods, the fluid flow is com-
puted on a stationary grid and remeshing is not required. The non-boundary-fitted methods are, generally

speaking, simpler and more efficient than the boundary-fitted methods, and consequently have attracted

more attention, as evidenced by the emergence of a variety of such methods for multicomponent fluid flows

[5–10], the fluid/rigid-solid system [11–13], and the fluid/elastic-solid problem [14–16].

When applying the non-boundary-fitted scheme to the fluid–solid system and solving the fluid-flow equa-

tion with grids extending into the interior of the solid, one actually uses the ‘‘fictitious domain’’ (FD) tech-

nique, which was initially developed to solve partial differential equations in a complex geometry.

Glowinski et al. [17–20] described the FD methods for the Dirichlet problem in which the boundary
condition is enforced with the Lagrange multiplier method, and they employed the methods to solve some

differential equations and the incompressible viscous unsteady flows in complex or moving geometries. The

Lagrange multiplier based FD method was also used by Bertrand et al. [21] and Tanguy et al. [22] to cal-

culate the three-dimensional Stokes flows of Newtonian and visco-plastic fluids in a mixer. Glowinski et al.

[12,23] developed the distributed-Lagrange-multiplier (DLM) based FD method to simulate particulate

flows where the rigid particles move freely. The key idea in this method is that the interior domains of

the particles are filled with the same fluids as the surroundings and the Lagrange multiplier (physically a

pseudo body force) is introduced to enforce the interior (fictitious) fluids to satisfy the constraint of rigid
body motion. The method has been successfully applied to the simulation of particulate flows [23–26].

In the field of fluid/flexible-body interactions, the arbitrary Lagrangian Eulerian (ALE) finite element

method [3,27] is a widely used one, however, the fictitious domain method has become increasingly popular.

There have existed three different FD-method-based schemes in the literature: non-body-force-based

scheme, body-force-based (but non-DLM-based) scheme, and DLM-based scheme. The method used by

Farnell et al. [16] for the simulation of a filament in a flowing soap film belongs to the first category,

and the feature of this method is that the motion of the filament is determined by the fluid pressure force

acting on the filament and then it in turn affects the fluid motion by requiring the fluid velocities at the grids
inside the filament (with an assumed numerical thickness) to equal the filament velocity. The immersed

boundary method proposed by Peskin [14] is a non-DLM-based FD method (as pointed out by Glowinski

et al. [12]), which has been applied to a wide range of fluid–structure interaction problems (e.g. Eggleton

and Popel [28], Zhu and Peskin [29]). In this method, the flexible body moves at the same velocity as the

local fluid, and then affects the fluid motion through an elastic force that is calculated with the known

deformation of the body and is introduced into the fluid momentum equation as a pseudo body force.

For both methods, the no-slip velocity constraint is simply enforced at a fractional time step, either requir-

ing the fluid velocity to equal the known solid velocity, or the solid velocity to equal the known fluid veloc-
ity. By contrast, in the DLM-based FD/ME method of Baaijens [15], the no-slip velocity constraint is

imposed as an equation for the Lagrange multiplier defined on the solid boundary (i.e., a pseudo body

force), and the fluid and solid velocities are obtained simultaneously. Another feature of Baaijens� method

is that it directly solves the solid momentum and continuity equations, and consequently can account for

the effect of the material physical thickness, whereas the other two schemes are suited to the problems where

the material thickness is negligibly small, as a result of their simple algorithms. An important feature of the

pseudo-body-force based methods including the DLM-based one is that the hydrodynamic force on the

solid boundary is not required to determine the motion of the solid.
The Baaijens� method has been verified by experiment (de Hart et al. [30]) and successfully applied to the

fluid–structure interaction in the aortic valve (e.g. de Hart et al. [31]). However, its formulation was derived

under the assumption that the inertial effect and the real body force are not present. The aim of this work is



Z. Yu / Journal of Computational Physics 207 (2005) 1–27 3
to present a complete DLM-based FD formulation, which is a generalization of the DLM/FD formulation

of Glowinski et al. [12] from the rigid-body case to the general solid material case, and differs from Baaijens�
formulation in that we use the DLM to enforce the fluid to move at the same velocity as the solid not only

on the solid boundary but also inside the solid domain.

Following the derivation procedure of Glowinski et al. [12], we will derive the new formulation in the
following section. A simple and efficient computational scheme will be described in Section 3. We verify

our method by applying it to two typical fluid–structure interaction problems in Section 4 and give the

concluding remarks in the last section.
2. DLM/FD formulation

2.1. The governing equations in the strong form

The motion of the elastic body is described with the Lagrangian method. Let P(t) and oP(t) represent the

solid domain and its boundary at current configuration x, P0 the solid domain at a reference configuration

X, X the entire domain comprising both interior and exterior of the body, and C the boundary of X. A sche-

matic diagram in the 2-D case is shown in Fig. 1.

The governing equations consist of the following three parts.

1. Fluid motion:
Fig. 1.
qf
duf

dt
¼ r � rf þ qf ff in X n P ðtÞ; ð1Þ

r � uf ¼ 0 in X n P ðtÞ; ð2Þ

rf ¼ �pIþ 2gD in X n PðtÞ; ð3Þ

uf ¼ uC on C; ð4Þ

uf ¼ us on oP ; ð5Þ

uf ðt ¼ 0Þ ¼ uf 0 in X n P ðtÞ: ð6Þ
Ω

Γ

P0
P(t)

X

x

xi

Xi

P∂

The schematic diagram of the fictitious domain method for the solution of the fluid–solid system in the two-dimensional case.
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2. Solid motion:
qs
dus

dt
¼ r � rs þ qsfs in PðtÞ; ð7Þ

Jqs ¼ q0 in P ðtÞ; ð8Þ

rs ¼
k0 ln J

J
Iþ G

J
ðB� IÞ in P ðtÞ; ð9Þ

rs � n ¼ rf � nþ fe on oP ; ð10Þ

usðt ¼ 0Þ ¼ us0 in P ðtÞ: ð11Þ

3. Kinematic equations:
dx

dt
¼ us in P ðtÞ; ð12Þ

xðt ¼ 0Þ ¼ x0 in PðtÞ: ð13Þ
Eqs. (1)–(3) are the momentum equation, the continuity equation and the constitutive equation for a New-
tonian fluid, respectively. Here, uf, p, qf, ff, rf, D and I are the fluid velocity, pressure, density, body force,

stress tensor, rate of deformation tensor, and unit tensor, respectively.

Eqs. (7)–(9) represent the momentum equation, the continuity equation and the constitutive equation for

the solid motion, respectively. In (7), us denotes the solid velocity, qs density, fs body force, and rs Cauchy

stress tensor at the current configuration x. In (8), J is the determinant of deformation (gradient) tensor F

and q0 is the density at the reference configuration X. F describes the material deformation at the current

configuration with respect to the reference configuration and is defined by F = ox/oX ” ($0x)
T. Eq. (9) is the

constitutive equation for the neo-Hookean material [32], in which B is Finger tensor, defined by B = F Æ FT,
and k0, G are two material parameters characterizing the elastic solid: k0 is related to the compressibility

property of the material and G represents the shear modulus of the material. In this study, we assume

the material is incompressible, i.e., J = 1, but for simplicity this constraint is imposed with a penalty-

function-like approximation by setting a large enough value for k0. An alternate way to implement the

incompressibility constraint is to replace k0 ln J
J with the pressure �ps and then determine the pressure with

equation �J = 1�, as in Baaijens [15].

In (10), n is the normal unit vector on the solid surface directing inwards the fluid and fe denotes the non-

hydrodynamic force (density) on the solid surface such as external surface forces or contact forces between
either two different bodies or between two different parts of the same (flexible) body.

For convenience of exposition, the Dirichlet boundary condition is imposed on the outer boundary C, as
in (4), and the flexible body is suspended in the fluid so that the stress boundary condition (10) is imposed

on the entire solid surface. The application of the method to be presented below, however, is not limited to

these assumptions, as shown in our numerical examples.

Next, we follow the procedure of Glowinski et al. [12] to derive the FD/DLM formulation for a general

solid material. The case of two-dimensions is considered.

2.2. Weak form

We define the following combined velocity space:
W u ¼ fðuf ; usÞjuf 2 H 1ðX n P Þ2; us 2 H 1ðP Þ2; uf ¼ us on oP ; uf ¼ uC on Cg ð14Þ
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and corresponding combined variance space
W 0 ¼ fðvf ; vsÞjvf 2 H 1ðX n P Þ2; vs 2 H 1ðP Þ2; vf ¼ vs on oP ; vf ¼ 0 on Cg ð15Þ

and perform the following symbolic operations:
Z

XnP
Eq: (1) � vf dxþ

Z
P
Eq: (7) � vs dx: ð16Þ
Integrating the stress-divergence terms by parts and substituting (10) into (16) yields
Z
XnP

qf
duf

dt
� qf ff

� �
� vf dxþ

Z
XnP

rf : rvf dxþ
Z
P

qs
dus

dt
� qsfs

� �
� vs dxþ

Z
P
rs : rvs dx

¼
Z
oP
fe � vs dx for all ðvf ; vsÞ 2 W 0: ð17Þ
It is not surprising that the hydrodynamic forces on the solid boundary cancel in the combined momentum

equation (17), since they represent internal forces for the combined fluid–solid system [12].
2.3. FD weak formulation

To construct a fictitious domain formulation, we extend the fluid computational domain from XnP to X,
and couple the velocities uf and us not only via the solid surface oP, but the entire solid domain P. The com-

bined velocity and variance spaces are modified as follows:
eW u ¼ fðuf ; usÞjuf 2 H 1ðXÞ2; us 2 H 1ðP Þ2; uf ¼ us in P ; uf ¼ uC on Cg; ð18Þ

eW 0 ¼ fðvf ; vsÞjvf 2 H 1ðXÞ2; vs 2 H 1ðP Þ2; vf ¼ vs in P ; vf ¼ 0 on Cg: ð19Þ
Noting that
Z
P

qf
duf

dt
� qf ff

� �
� ðvf � vsÞ dxþ

Z
P
rf : rðvf � vsÞ ¼ 0 for all ðvf ; vsÞ 2 eW 0 ð20Þ
and adding (20) to (17), we obtain the following formulation for ðuf ; usÞ 2 eW u:
Z
X

qf
duf

dt
� qf ff

� �
� vf dxþ

Z
X
rf : rvf dxþ

Z
P

ðqs � qf Þ
dus

dt
� ðqsfs � qf ff Þ

� �
� vs dx

þ
Z
P
ðrs � rf Þ : rvs dx ¼

Z
oP
fe � vs dx for all ðvf ; vsÞ 2 eW 0: ð21Þ
The fluid constitutive equation can be trivially extended into the interior of the solid since (20) holds for any

forms of rf in P. The fluid continuity equation (2) can also be extended into P because we consider the

incompressible solid material. Even if the solid material is not exactly incompressible (but nearly incom-

pressible), we believe that this extension is acceptable, since the solid continuity equation is based on the

deformation history, and for J being close to unity, the divergence-free approximation for the instanta-

neous velocity should be good enough.

The space for the fluid pressure in X can be defined as
L2
0ðXÞ ¼ p 2 L2ðXÞ

Z
X
p dx ¼ 0

����� �
: ð22Þ
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The weak form of the fluid continuity equation in X isZ

X
qr � uf dx ¼ 0 for all q 2 L2ðXÞ: ð23Þ
Since �J = 1� is enforced with the penalty-function method, the combined momentum equation (21) with the

stresses substituted from the constitutive equations (3) and (9), the fluid continuity equation (23), the kine-

matic equation (12), and together with the initial conditions (6), (11) and (13), form a complete set of FD

based governing equations.

2.4. DLM/FD weak formulation

Finally, the DLM is introduced to relax the constraints �uf = us in P� from the combined velocity space

and the corresponding constraint from the combined variance space, resulting in the following DLM/FD

based momentum equations from (21) for uf 2 W u, us 2 H1(P)2 and k 2 K:
Z
X

qf
duf

dt
� qf ff

� �
� vf dxþ

Z
X
rf : rvf dx ¼ hk; vf iP for all vf 2 W 0; ð24Þ

Z
P

ðqs � qf Þ
dus

dt
� ðqsfs � qf ff Þ

� �
� vs dxþ

Z
P
ðrs � rf Þ : rvs dx

¼
Z
oP
fe � vs dx� hk; vsiP for all vs 2 H 1ðP Þ2; ð25Þ

huf � us; fiP ¼ 0 for all f 2 K; ð26Þ

where k and f are the DLM and its variance defined in the space K, respectively, Æ Æ , Æ æP denotes an appro-

priate inner product, and:
W u ¼ fuf juf 2 H 1ðXÞ2; uf ¼ uC on Cg; ð27Þ

W 0 ¼ fvf jvf 2 H 1ðXÞ2; vf ¼ 0 on Cg: ð28Þ
A variety of choices of the definitions of the multiplier space K and the inner product Æ Æ , Æ æP are possible,

such as H1(P)2 and L2(P)2 for K, and the corresponding standard inner products for Æ Æ , Æ æP, respectively
[12]. To our knowledge, the former choice, however, has never been implemented numerically in the pre-

vious works for the rigid-body problems, presumably due to the implementation difficulty arising from

the use of two different sets of meshes for the velocity and the Lagrange multiplier. For its simplicity,

the collocation point method has been widely used [12,21,24], which makes sense only for the discrete space.

In this method, the discrete multiplier space is characterized by Dirac delta functions at points covering

uniformly the solid domain, and Æ Æ , Æ æP is defined as the discrete L2 inner product [12].

In the present study, we use a collocation-point-like scheme, which is resulted from the choices of the L2

inner product for Æ Æ , Æ æP, H1(P)2 for K, and then the application of the trapezoidal rule to the integration in
the finite-element discretization. The method differs from the collocation point method only in that the

discrete L2 inner product between the velocity and the multiplier (or their variances) is weighted with

the support areas of the shape functions for the points (or nodes). It should be noted that the application

of the trapezoidal rule not only simplifies the computation, but also improves the stability of the algorithm,

since we found that the computation with the collocation-point-like scheme was stable, whereas the one

with the Gaussian rule instead for the integration was not. One anonymous referee of the current paper

argued that the formulation (24)–(26) with the above choices of the multiplier space and the inner product

is ill-posed due to the fact that the normal derivatives of the exact solution of the velocity overcome a jump
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through the solid boundary. The argument is true, but our definition of the multiplier space K as H1(P)2

only has a nominal sense, and using the collocation-point-like method, we actually do not seek the solution

of the Lagrange multiplier in H1(P)2. In the formulations below, we will substitute the L2 inner product for

Æ Æ , Æ æP, but retain the exposition of the multiplier space as K to avoid confusion. The collocation-point-like

method used here may not be the best one and further investigation on the choices of the multiplier space
and the inner product is our future work.

When Æ Æ , Æ æP is defined as the L2 inner product, the Lagrange multiplier k can be directly interpreted as a

pseudo body force on the fictitious fluid in the solid domain, enforcing the inner fluid to move at the same

velocity as the solid, as can be seen from (24) and (26). This physical implication in the DLM/FD formu-

lation has been made clear by Glowinski et al. [12] in their work on the rigid body where the Lagrange mul-

tiplier (i.e., pseudo body force) is required to maintain the rigid-body motion of the fictitious fluid. The

DLM k is analogous to the pressure in incompressible fluid flows, whose gradient is the (pseudo body) force

required to maintain the constraint of incompressibility, as pointed out by Glowinski et al. [12]. It is well
known that the pressure can be also mathematically interpreted as a Lagrange multiplier.

We wish to make some comments on the differences between our formulation and other formulations

including Baaijens� and Peskin�s. As already mentioned in the introduction, the feature of Baaijens� formu-

lation is that the Lagrange multiplier is defined on the surface of the body. Since the FD formulation with

the surface multiplier does not impose any constraint to the fluid velocity inside the solid body, the exten-

sion condition (20) for obtaining a FD formulation cannot rigorously hold, and hence, the application of

the formulation is limited to the cases where the extension of the fluid equations into the solid domain does

not introduce significant errors. The Peskin�s formulation differs from ours in that an elastic body force
rather than a Lagrange multiplier is introduced into the fluid equation and that the strong form rather than

the weak form is directly used. The strong form of our formulation is essentially same as his, and the only

difference lies in an unimportant term �Prf : $vs dx. We inspected the effect of the term �Prf : $vs dx on the

motion of the leaflet in our first numerical example below, and found that its effect was indeed negligible,

which is not surprising since the rate of deformation of the solid material is normally very small.

Our formulation is a straightforward extension of the DLM/FD formulation of Glowinski et al. [12]

from the rigid-body case to the general solid material case by replacing Newton�s equations of motion with

the continuum equations. By imposing the rigid-body motion constraints to the velocity and its variance in
the solid domain, we find that our formulation reduces to theirs.

2.4.1. Governing equations for Newtonian fluid and neo-Hookean solid

Now we consider the special cases where gravity is the only real body force for both the fluid and the

solid, and the non-hydrodynamic force on the solid surface is absent. The formulation for the incompress-

ible neo-Hookean material immersed in a Newtonian fluid with the penalty function approximation is

stated as follows:

find uf 2 W u, p 2 L2
0ðXÞ, us 2 H1(P)2 and k 2 K satisfying
Z

X
qf

ouf

ot
þ uf � ruf

� �
� vf dxþ

Z
X

�pIþ gðruf ÞT
� 	

: rvf dx ¼
Z
P
k � vf dx for all vf 2 W 0; ð29Þ

Z
X
qr � uf dx ¼ 0 for all q 2 L2ðXÞ; ð30Þ

Z
P

ðqs � qf Þ
dus

dt
� g

� �� �
� vs dxþ

Z
P
ðrvsÞT : ½k0 ln JIþ GðB� IÞ� dx

�
Z
P
ðrvsÞT : f�pIþ g½ruf þ ðruf ÞT�g dx ¼ �

Z
P
k � vs dx for all vs 2 H 1ðPÞ2; ð31Þ
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Z
P
ðuf � usÞ � f dx ¼ 0 for all f 2 K; ð32Þ
as well as the kinematic equation (12), and the initial conditions (6), (11) and (13). The gravity term in the

fluid momentum equation (29) is dropped, which means the hydrostatic pressure is not included in the com-

puted fluid pressure.
2.4.2. Dimensionless governing equations

Eqs. (29)–(32) can be non-dimensionlized by introducing the following scales: Lc for length, Uc for veloc-

ity, Lc/Uc for time, qfU
2
c for the pressure p and parameters k0 and G, and qf U

2
c=Lc for the Lagrange

multiplier. For convenience, we write the dimensionless quantities in the same form as their dimensional

counterparts, unless otherwise specified. Then (29)–(32) become, respectively:
Z
X

ouf

ot
þ uf � ruf

� �
� vf dxþ

Z
X

�pIþ 1

Re
ðruf ÞT

� �
: rvf dx ¼

Z
P
k � vf dx; ð33Þ

Z
X
qr � uf dx ¼ 0; ð34Þ

Z
P

ðqr � 1Þ dus

dt
� Fr

g

g

� �� �
� vs dxþ

Z
P
ðrvsÞT : ½k0 ln JIþ GðB� IÞ� dx

�
Z
P
ðrvsÞT : �pIþ 1

Re
½rvf þ ðrvf ÞT�

� �
dx ¼ �

Z
P
k � vs dx; ð35Þ

Z
P
ðuf � usÞ � f dx ¼ 0; ð36Þ
in which the following dimensionless parameters are introduced:
density ratio: qr ¼ qs=qf ; ð37Þ

material parameters : �k0 ¼ k0=qfU
2
c ;G ¼ G=qf U

2
c ; ð38Þ

Reynolds number: Re ¼
qf UcLc

g
; ð39Þ

Froude number: Fr ¼ gLc

U 2
c

: ð40Þ
Here, the Froude number represents the relative importance of gravity with respect to inertia.
3. Computational scheme

The motion of an elastic body is solved from the Lagrangian formulation, in which the integration of the

Lagrangian variables can be performed at either X or x. We choose X here because in the elastic stress term

a derivative of the shape function with respect to the configuration is required, while the current configu-

ration x is unknown. We take the configuration x as an independent variable, instead of the solid velocity,

and define the DLM in the Lagrangian frame. Noting that ($vs)
T = ($0vs)

T Æ F�1, Eqs. (33)–(36) become:
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find uf 2 W u, p 2 L2
0ðXÞ, x 2 H1(P0)

2 and k 2 K satisfying
Z
X

ouf

ot
þ uf � ruf

� �
� vf dxþ

Z
X

�pIþ 1

Re
ðruf ÞT

� �
: rvf dx ¼

Z
P 0

k � vf dX for all vf 2 W 0;

ð41ÞZ
X
qr � uf dx ¼ 0 for all q 2 L2ðXÞ; ð42Þ

Z
P 0

ðqr � 1Þ d2x

dt2
� Fr

g

g

� �� �
� vs dXþ

Z
P 0

ðr0vsÞT : �k0 lnJF
�1 þGðFT �F�1Þ


 �
dX

�
Z
P0

ðr0vsÞT : F�1 � �pIþ 1

Re
ruf þ ðruf ÞT
h i� �

dX¼�
Z
P0

k � vs dX for all vs 2 H 1ðP 0Þ2; ð43Þ

Z
P0

uf �
dx

dt

� �
� f dX ¼ 0 for all f 2 K; ð44Þ
where we still use vs to represent the variance of the configuration. In the above equations, all updated

Lagrangian integration domains P have been transformed to P0, however, for those terms also involving

Eulerian variables, the updated configuration is still required to interpolate the Eulerian variables into
the Lagrangian frame.
3.1. Fractional step scheme

The most accurate time discretization scheme is a fully coupled scheme such as the one used by Baa-

ijens [15] where the backward Euler scheme is used to discretize the governing equations in time and

the resulting non-linear algebraic equations are solved via Newton iteration. The scheme also has an

advantage of high stability, but has an disadvantage of low efficiency. In this work, we attempt to de-
vise a simple and efficient computational scheme with less emphasis on accuracy. Therefore, following

the idea of Glowinski et al. [12], we employ the first-order accurate fractional step (or operator-split-

ting) scheme to decouple the system (41)–(44). In the immersed boundary method, the elastic force is

calculated explicitly, and consequently the method is very efficient. Unfortunately, we were unable to

find a robust scheme that is based on the explicit calculation of the elastic force, probably due to

the different material constitutive model used here.

For convenience, we denote the elastic force term by
E ¼
Z
P0

ðr0vsÞT : ½k0 ln JF�1 þ GðFT � F�1Þ� dX: ð45Þ
Two schemes are recommended in this study.

Scheme 1. System (41)–(44) is decoupled into three sub-problems.

Fluid problem for u�f and p
Z
X

u�f � unf

Dt
þ unf � runf

� �
� vf dxþ

Z
X

�pIþ 1

Re
ðru�f Þ

T

� �
: rvf dx ¼

Z
Pn
kn � vf dxn;Z

X
qr � u�f dx ¼ 0: ð46Þ
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Solid problem for xn + 1:
Z
P0

ðqr�1Þ xnþ1�2xnþxn�1

Dt2
�Fr

g

g

� �� �
�vs dXþEnþ1�

Z
P0

ðr0vsÞT : ½ðFnÞ�1 �r�
f ðxnÞ�dX¼�

Z
Pn
kn �vs dxn:

ð47Þ

Lagrange multiplier problem for unþ1

f and knþ1:
Z
X

unþ1
f � u�f

Dt

 !
� vf dx ¼

Z
Pn
ðknþ1 � knÞ � vf dxn; ð48Þ

Z
Pn

unþ1
f � xnþ1 � xn

Dt

� �
� f dxn ¼ 0: ð49Þ
In (48), the superscript �*� in r�
f means that the fluid stress is calculated with u�f , instead of unf , for the

convenience of coding. Note that the integral of the fluid stress at X is transformed from the one at xn,

and therefore the fluid stress at xn rather than at X is used for the integration.

One can drop the Lagrange multiplier terms at the n time level in (46) and (48) from the

operator-splitting scheme, and the resulting scheme has been widely used in the DLM/FD method for

rigid body problems and is capable of giving reasonably accurate solutions [12,23–25]. However, we

have recently found that the new scheme alone can significantly improve the accuracy of the solution
for the rigid-body problems at low Reynolds numbers, in the sense that, unlike the old scheme, the

new scheme does not require a very small time step to obtain a reasonably accurate solution. In

addition, it is clear that the splitting error for the new scheme would vanish when steady-state is

achieved.

Scheme 2. For the Lagrange multiplier problem (48) and (49), Glowinski et al. [23] obtained the analytical

solution for the rigid-body case by assuming that the Lagrange multiplier does not change the velocity

outside the solid boundary in this sub-problem. In fact, if we consider the velocities unþ1
f and u�f in (48) as

functions in a continuous space (not a discretized space), this assumption holds exactly. Extending the

integration domain from Pn to X for the right-hand term of (48) by setting zero-value to the Lagrange

multiplier outside Pn, we have the strong form of (48):
unþ1
f � u�f

Dt

 !�����
Pn

¼ ðknþ1 � knÞjPn ; ð50Þ
and ðunþ1
f � u�f ÞjXnPn ¼ 0. The strong form of (49) is
unþ1
f � xnþ1 � xn

Dt

� �����
Pn

¼ 0: ð51Þ
Substituting unþ1
f into (50) from (51), we get a weak form of the resulting equation as follows:
Z

Pn

xnþ1 � xn

Dt2
�

u�f

Dt

� �
� vs dxn ¼

Z
Pn
ðknþ1 � knÞ � vs dxn; ð52Þ
which for the incompressible solid material, takes the form
Z
P0

xnþ1 � xn

Dt2
�
u�f ðxnÞ
Dt

� �
� vs dX ¼

Z
Pn
ðknþ1 � knÞ � vs dxn: ð53Þ
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Changing kn in (47) into kn+1 and adding (53) to the modified solid equation, we get
Enþ1 þ
Z
P0

qrx
nþ1

Dt2
� vs dX ¼

Z
P0

qrx
n

Dt2
þ
u�f ðxnÞ
Dt

þ ðqr � 1Þ xn � xn�1

Dt2
þ Fr

g

g

� �� �
� vs dX

þ
Z
P0

ðr0vsÞT : ½ðFnÞ�1 � r�
f ðxnÞ� dX�

Z
Pn
kn � vs dxn: ð54Þ
Replacing the solid equation (47) with (54) and remaining the other two sub-problems in Scheme 1 results

in our Scheme 2. Although, the transformations between the strong form and the weak form in (48)–(52)

hold theoretically, numerical approximations are introduced in these operations, in the sense that the

numerical solutions to the strong form and the weak form can not be exactly the same. However, our
numerical experiments show that the two schemes produce almost the same results, indicating that the

above approximations do not introduce appreciable numerical errors and Scheme 2 is as accurate as

Scheme 1. We found one advantage of Scheme 2 over Scheme 1 in that for the neutrally buoyant case

(i.e., qr = 1) it is difficult, if not possible, for Scheme 1 to obtain a stable solution, whereas, Scheme 2 is

stable. The most probable reason is that the presence of mass matrix for the neutrally buoyant case in

(54) for Scheme 2 improves the matrix condition number. As a result, we use Scheme 2 to do calculations

in this study, unless otherwise specified.

It should be noted that the above fractional step schemes are not applicable to the Stokes flow where the
Reynolds number is zero, in which case one may need to seek an efficient iterative scheme.
3.2. Solution of the fluid problem

With the fictitious domain method, the fluid problem can be always posed on a regular domain and

thereby solved with a structured grid system. As in [25], we use the half-staggered finite difference scheme

and the projection method solve the fluid problem (46). In the half-staggered finite difference scheme, the

velocity-components are co-located and the pressure nodes are staggered with the velocity nodes. Such an
arrangement of the velocity and pressure nodes is a reminiscence of the ‘‘Q1 � P0’’ finite element scheme

[33] where the velocity is piecewise bi-linear and the pressure is piecewise constant on each element. In fact,

both schemes give the same spatial discretization results for the velocity diffusion term and the pressure

term in the fluid momentum equation. However, since we use the projection method, the entire computa-

tional scheme is different from ‘‘Q1 � P0’’ finite element scheme where the velocity and the pressure are

coupled.

We employ the following first-order accurate projection scheme (assume Dirichlet boundary condition;

see [34] for more discussions on the projection scheme):
1:
u#f

2: r2

3:
u�f

pnþ1 ¼
� unf

Dt
þ ðuf � ruf Þn ¼

1

Re
r2u#f �rpn þ knP ; u#f ¼ uC on C: ð55Þ
/ ¼
r � u#f
Dt

;
o/
on

¼ 0 on C: ð56Þ
� u#f

Dt
¼ �r/; ð57Þ

pn þ /: ð58Þ
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In (55), knP represents
knP ¼ 1

h2

Z
Pn
kn � vf dxn; ð59Þ
where h denotes the fluid mesh, and vf now represents the bi-linear shape function for the fluid nodes. The

coefficient 1/h2 stems from the diagonal mass matrix h2I of the finite element scheme for all inner fluid nodes
(the nodes on the symmetrical or periodic boundary can be regarded as inner nodes by the consideration of

the extended elements); the mass matrix for the finite difference scheme can be regarded as I. The trapezoi-

dal rule is used to integrate (59).

Eq. (55) is a diffusion problem and can be further decomposed into two tri-diagonal systems with the

ADI technique. We adopt the following version [35]:
u
nþ1=2
f � unf

Dt=2
¼ 1

Re
r2

xu
nþ1=2
f þr2

yu
n
f

� 	
þ knP �rpn � ðuf � ruf Þn;

u#f � u
nþ1=2
f

Dt=2
¼ 1

Re
r2

xu
nþ1=2
f þr2

yu
#
f

� 	
þ knP �rpn � ðuf � ruf Þnþ1=2

:

ð60Þ
Eq. (56) is an elliptic problem on staggered grids with a homogeneous Neumann boundary condition and

can be efficiently solved by using a combination of a specialized fast cosine transformation (FCT) and a tri-

diagonal system solver. The reader can find the codes of both FCT and a tri-diagonal system solver in Press
et al. [36]. It is better to perform FCT in a direction with the fewer number of grids, since the computational

cost of FCT is O(N logN) whereas only O(N) for the tri-diagonal system solver, here N being the number of

the grids in one direction.

3.3. Solution of the solid problem

We use the four-node quadrilateral element (i.e., continuous bi-linear interpolant) for both the solid con-

figuration and the Lagrange multiplier. In (47) and (54), the penalty function term is integrated using
Gaussian rule with only one Gaussian point, and all other terms except the Lagrange multiplier term

are integrated with four Gaussian points (2 · 2). The Lagrange multiplier term is integrated using the trap-

ezoidal rule. The fluid velocities at the Lagrangian nodes (not Gaussian points directly in this study) are

obtained from the fluid nodes with the bi-linear interpolation. The implication of ‘‘Q1 � P0’’ element is used

for determining the fluid stress at Lagrangian nodes in (54), i.e., the fluid velocity is bi-linear and the

pressure is piecewise constant on each fluid element. The resulting non-linear equation (54) is solved with

Newton iterations and the linearized equation in each iteration is solved with the LU decomposition

method based on the implicit partial pivoting [36].
The use of the first-order accurate time scheme requires a small time step, within which the configuration

change of the solid is small; as a result, the configuration obtained at a previous time level provides an excel-

lent guess solution in the Newton iterative procedure, and we observed that it requires only 2–3 iterations to

render the relative difference between the solutions at two consecutive iterations less than 10�6.
3.4. Solution of the Lagrange multiplier problem

The trapezoidal rule is used to integrate all terms in (48) and (49), resulting in a collocation-point-like
method to enforce the constraint of the solid and fluid velocities in the solid domain being equal, for the

bi-linear Lagrange multiplier shape function used. Application of the 2 · 2 Gaussian integration rule to

the Lagrange multiplier (and its shape function) terms was found to result in an unstable scheme, and

the scheme from the use of the piece-wise constant interpolant for the Lagrange multiplier was also not
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as stable as the collocation-point-like method above. For consistency (in terms of the multiplier discrete

space), the Lagrange multiplier terms in both fluid and solid sub-problems are also integrated with the trap-

ezoidal rule, as mentioned earlier.

System (48) and (49) is a saddle-point problem and can be efficiently solved with the conjugate gradient

iterative method (Glowinski et al. [12]). Glowinski et al. suggested the solid (or Lagrange multiplier) mesh
size hs to be 0.5h–2h, h being the fluid velocity mesh size, from the consideration of both the stability and the

accuracy. Our numerical experiments indicate that for relatively high Reynolds numbers (in the hundreds)

the solid mesh size being smaller than the fluid one will always cause instability, whereas being larger than

2hmight give rise to too much loss of accuracy, irrespective of the rigid body problems we studied before or

the flexible body problems studied here, and therefore hs being h–2h is a good choice. For the rectangular

solid mesh, the size in one direction can be slightly smaller than the fluid mesh size if the one in the other

direction is larger than h.

One certainly does not have to use identical elements for the solid configuration and the Lagrange mul-
tiplier. For example, for a highly slender body, fine solid mesh (e.g. two layers of meshes across the body)

may be still necessary for determining the solid deformation with acceptable accuracy, as indicated in our

experiment below, while coarser Lagrange multiplier mesh (one layer of meshes) is better chosen to allow

for a larger fluid mesh size. Nevertheless, the computational bottleneck of our algorithm lies in the solution

of the solid sub-problem, since the fluid problem can be solved very efficiently with the fast solver. For a big

solid system, the currently used direct solver is not practical, and has to be replaced with a iterative solver

such as Bi-CGSTAB [37].
4. Numerical experiment

Two problems are considered here: one is the oscillation of an infinitely wide flexible plate along the flow

direction, and the other is the self-sustained oscillation of a flexible plate across the flow direction.

4.1. Oscillation of a flexible plate along the flow direction

Fig. 2 shows the schematic diagram of the first test problem, which was introduced by Baaijens [15] and

mimics the motion of heart-valve leaflets in a two-dimensional setting. The channel height isH and the leaf-

let is located midway in the streamwise direction. The homogeneous Dirichlet condition and the symmetry

condition are imposed on C2 and C4, respectively. Since the velocities normal to the walls vanish, the homo-

geneous Neumann conditions for / in (56) hold on C2 and C4, according to (58). In the original problem of

Baaijens, flow flux conditions rather than velocity conditions are imposed on C1 and C3, which gives rise to

a difficulty in applying the fast solver to (56). To circumvent this difficulty, we simply give parabolic veloc-

ities along C1 and C3 but move them to places far away from the leaflet to avoid the disturbance of the
leaflet motion on the velocity profile. The mean velocity and the channel height H are taken as the char-

acteristic velocity and length, respectively.

Corresponding to the dimensional parameter values in one example of Baaijens, the dimensionless ones

are: qr = 1, G ¼ 103, Re = 100 and U ¼ 1:5yð2� yÞ sinð2pT tÞ along C1 and C3, here, T being the dimensionless

period for the flow flux changing with time and equal to 10. The length and thickness of the leaflet are 0.8

and 0.0212, respectively. The channel length is set to be 8, which, we found, produces the same results as the

case of the channel length being 10. The motion of the leaflet and the corresponding flow fields are illus-

trated in Fig. 3, which are obtained with Scheme 2, the solid mesh (3 · 80), h = 1/128, Dt = 0.005 and
�k0 ¼ 105. For the time t/T = 0–0.25, the leaflet deflects to the right (Figs. 3(a) and (b)) as the flow rate

increases. For t/T = 0.25–0.5, the leaflet tends to bounce back as the flow flux decreases (Figs. 3(c)–(e)).

Subsequently, the reverse flow drives the leaflet to deflect to the left (Figs. 3(f)–(h)). The results are
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Fig. 2. Schematic diagram of the test problem: oscillation of a flexible plate along the flow direction.
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qualitatively same as those obtained by Baaijens, however, our leaflet appears to be more deflected than

Baaijens� (Fig. 7 in his paper), particularly at t/T = 0.5 (Fig. 3(e)). We will examine the effects of the numer-
ical parameters including the mesh size, the time step and the penalty parameter on the accuracy of our

results.

We found that Scheme 1 is not stable for the neutrally buoyant problem, but is robust for the non-neutrally

buoyant case. The configurations of the leaflets at t/T = 0.5 and qr = 2 and 5, respectively, are calculated with

the two schemes and compared in Fig. 4. There are almost no differences between the results from the two

schemes for both cases of qr = 2 and 5, indicating that Scheme 2 is as accurate as Scheme 1 and there is no

reason why its accuracy would degenerate for the neutrally buoyant case.

Fig. 5 plots the results of convergence tests for the penalty parameter �k0. We see that �k0 being two-order
in magnitude larger than G can provide roughly converged solutions for the cases of G ¼ 1000 and partic-

ularly G ¼ 500. Therefore, this criterion for the choice of the value of �k0 is used for all other calculations in

this work. In addition, Fig. 5 shows that the leaflet for G ¼ 500 can be much more deformed than the one

for G ¼ 1000.

The results of convergence tests for the solid mesh and the time step are shown in Fig. 6. The fluid

velocity mesh size h is fixed to be 1/128, which should be fine enough to produce a sufficiently accurate

fluid flow solution. From Fig. 6, the convergence behavior of the scheme with the time step is good,

since the results obtained from Dt = 0.01 and Dt = 0.005 are in good agreement, however, the conver-
gence behavior with the solid mesh is relatively poor, which is the main source of numerical errors in

our scheme. It is difficult to obtain a completely converged solution with the refinement of the solid

mesh due to the fact that if we increase the number of meshes along the leaflet while fixing the number

of meshes across the body, the computed leaflet always appears to be more deflected. Fortunately, the

solution becomes less sensitive to the mesh aspect ratio with the increasing number of the transverse

meshes and the tendency for the solutions to converge with the mesh refinement is clear. To elucidate

whether this poor mesh convergence behavior is fully due to the drawback of the DLM/FD method, or

partly because of the difficulty in the solution of the solid problem, we perform the mesh convergence
tests for the solid sub-problem alone. For simplicity, we solve (47) with only the solid elastic term and

the Lagrange multiplier term remained, and the Lagrange multiplier is set to be �1 homogeneously in

the solid domain. The results are presented in Fig. 7, and we observe the same convergence behavior

with the mesh aspect ratio as in the above fluid–solid interaction problem. Therefore, we owe the poor

convergence performance with the solid mesh of our method mainly to the challenging solid problem

itself, not the DLM/FD scheme.

From the convergence tendencies manifested in both Figs. 6 and 7, it seems that the optimal aspect ratio

of the solid mesh is not unity but a value between 1 and 2. Hence, for both the accuracy and the stability,
one better sets the solid mesh size in each direction to be between h and 2h, and the size along the body is

larger than the one in the other direction. The success of the use of three layers of meshes across the body
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(f) t/T=0.6
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Fig. 3. The configurations of a neutrally buoyant infinitely wide plate (leaflet) and the flow fields at different times in a channel with the

flow flux changing periodically. The results are obtained with Scheme 2, solid mesh (3 · 80), h = 1/128, Dt = 0.005, G ¼ 103, Re = 100

and �k0 ¼ 105.

Z. Yu / Journal of Computational Physics 207 (2005) 1–27 15
(3 · 60 and 3 · 80) in the present problem shows that the mesh size in one direction can be slightly smaller

than the fluid mesh size ð0:0212
3

< 1
128
Þ if the one in the other direction is larger than h. The computation with

the mesh 3 · 90 was observed not stable. Fig. 6 indicates that the results obtained with two layers of meshes

across the body are acceptable if the above criterion is satisfied (2 · 54 and 2 · 60), considering the difficulty

in determining the leaflet half top configuration accurately. The leaflet configuration of Baaijens at t/T = 0.5

is close to our 2 · 40 one, and it is possible that his results also suffered from the use of the large mesh aspect
ratio, although his formulation and computational scheme are different from ours.
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Fig. 4. The effect of the density ratio on the configurations of the leaflets at t/T = 0.5, and the comparisons between the results obtained

from the two schemes. (1) qr = 1, Scheme 2; (2) qr = 2, Scheme 2; (3) qr = 5, Scheme 2; (4) qr = 2, Scheme 1; (5) qr = 5, Scheme 1; (6)

qr = 10, Scheme 1. Fr = 0, G ¼ 103 and Re = 100 for all cases. The results from the two schemes are in excellent agreement with each

other. The effect of the solid inertia is not very important for this streamwise oscillation problem.
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Fig. 5. Convergence tests for the penalty parameter �k0 using the configurations of the leaflets at t/T = 0.5. (1) �k0 ¼ 106 and 107,

respectively, and G ¼ 103; (2) �k0 ¼ 105; G ¼ 103; (3) �k0 ¼ 104; G ¼ 103; (4) �k0 ¼ 5� 104; G ¼ 5� 102; (5) �k0 ¼ 5� 105; G ¼ 5� 102.

qr = 1, Re = 100, mesh (3 · 80) and Dt = 0.005.
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The effects of Fr on the configurations of the leaflets at t/T = 0.5 is shown in Fig. 8. We assume that grav-

ity points in the negative x-direction, as shown in Fig. 2. For qr = 2 and Fr = 10, the buoyant effect on the

leaflet motion is significant. Fr = 10 may correspond to the case where the characteristic velocity (mean

velocity) is 10 cm/s, the characteristic length (channel height) is 1 cm and the gravitational acceleration is

1000 cm/s2. qr 6¼ 1 introduces both the buoyant effect and the solid inertial effect, and for the present prob-

lem where the oscillation of the solid is driven by the periodical fluid flow, the solid inertial effect is rela-

tively not important, as shown in Fig. 4. However, we will see that the solid inertia plays a crucial role
in the self-sustained oscillation of a flexible plate swimming in a fluid. Fig. 8 also shows the effect of the

Reynolds number, and we observe that the bouncing process of the leaflet is sensitive to Re when Re is

between 100 and 200, but becomes less sensitive for Re > 200.
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Fig. 6. Convergence tests for solid mesh and time step, using the configurations of the leaflets at t/T = 0.5. (1) Mesh (2 · 40),

Dt = 0.005; (2) mesh (2 · 54, Dt = 0.005; (3) mesh (2 · 60), Dt = 0.005; (4) mesh (3 · 60), Dt = 0.005; (5) mesh (3 · 80), Dt = 0.005; (6)

mesh (3 · 80), Dt = 0.01. h = 1/128, qr = 1, G ¼ 103, Re = 100 and �k0 ¼ 105. The convergence behavior of the scheme with time step is

good, but relatively poor with solid mesh, which is mainly caused by the difficulty in solving accurately the solid problem alone.
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Fig. 7. Mesh convergence tests for the solid problem alone. The deformation of the leaflet is driven by a homogeneous body force that

directs to the right and is unity in magnitude; the solid inertia and the flow are not considered. (1) Mesh (2 · 40); (2) mesh (2 · 54); (3)

mesh (2 · 60); (4) mesh (3 · 60); (5) mesh (3 · 80). G ¼ 103, and �k0 ¼ 105. The solution (leaflet top half configuration) is sensitive to the

aspect ratio of the solid mesh, particularly for the coarser mesh, and the leaflet appears to be more flexible with the increasing number

of the meshes along the leaflet for the same mesh resolution across the leaflet.
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The effect of the fluid stress on the motion of the leaflet was found negligible for the case of qr = 1,

G ¼ 103, Re = 100 since the switch off this term did not cause any noticeable difference in the solid

configuration.

4.2. Self-sustained oscillation of a flexible plate across the flow direction

The flow over a flexible plate in a channel is considered here. This problem is of great interest because

it can be taken as a hydrodynamic model to probe the mechanisms in the practical flag-flapping and
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Fig. 8. The effects of Re and Fr on the configurations of the leaflets at t/T = 0.5. (1) Re = 100, qr = 1; (2) Re = 200, qr = 1; (3) Re = 500,

qr = 1; (4) Re = 100, qr = 2, Fr = 1; (5) Re = 100, qr = 2, Fr = 10. Gravity directs to the left.
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fish-swimming problems. Zhang et al. [38] investigated experimentally the self-sustained oscillation of a fil-

ament in a flowing soap film, and observed an interesting so-called bi-stability phenomenon: in a certain

range of the filament length, the filament can either be in a flapping state or a stretched-straight state,

depending on the magnitude of the initial disturbance to the filament, and above a critical filament length,

the stretch-straight state disappears and only the flapping state remains. The numerical studies on this prob-
lem have been attempted by Zhu and Peskin [29] and Farnell et al. [16]. Both groups of the authors used the

fictitious-domain-based methods to solve the flow fields and the non-continuum-equation-based methods to

track the motion of the filament, although, the two implementations are different. Zhu et al. [29] succeeded

in reproducing the bi-stability phenomenon in their simulations. We aim to examine the effects of dimen-

sionless control parameters on the motion of the flexible body in the present study, which have not been

done in both previous works.

For our numerical model, the mainstream velocity is imposed on all boundaries of the channel, and one

end surface of the plate is fixed at the channel center near the inlet, as shown in Fig. 9. We take the main-
stream velocity U as the characteristic velocity and the length of plate L as the characteristic length. If we

can neglect the effect of the channel length, then the dimensional parameter group consists of qr, G, Re, Fr,
ar and H , here, ar being the aspect ratio of the plate and H the dimensionless channel width. We assume that

gravity points from the fixed end to the free end of the plate (to the right in Fig. 9). We consider only two

cases for ar: ar = 20 and ar = 40. We are not interested in the effect of H , and its value is set to be 1 for

ar = 40 and 2 for ar = 20 so that the ratio of the channel width to the plate thickness is fixed. The solid mesh

3 · 40 and h = 1/64 are used for ar = 20, and mesh 3 · 80 and h = 1/128 for ar = 40. For all cases, the dimen-

sionless channel length is 8 and the time step is 0.005. The reference (or equilibrium) configuration of the
plate (X,Y) is aligned with the streamwise direction, and the initial configuration (x0,y0) is declined with the

streamwise direction by an angle tan�1d0, i.e.:
x0 ¼ X ;

y0 ¼ d0X þ Y :
ð61Þ
It is clear that such a transformation conserves the area.
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Fig. 9. The vorticity contours and the configurations of the plate at different times during around half a oscillatory period for d0 = 0.1

and ðqr;G;Re; Fr; ar;HÞ ¼ ð8; 100; 500; 0; 40; 1Þ. The vorticity increment for the contours is 5.0.
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Fig. 9 shows the vorticity contours and the configurations of the plate at different times during around

half a oscillatory period (the period is about 1.4) for d0 = 0.1 and ðqr;G;Re; Fr; ar;HÞ ¼
ð8; 100; 500; 0; 40; 1Þ. Similar to the flow over a stationary plate (see Fig. 16(a)), strong standing vortices al-

ways exist in the vicinity of the plate surface near the fixed end. The free end of the plate in Fig. 9(a) at
t = 16.6 is near its trough. When the free end moves upwards, a convex top surface with a large curvature

appears at t = 16.8 (i.e., around T/6 later) (marked by A in Fig. 9(b)) and the vorticity enhances there, which

is similar to the flow over a blunt body. After t = 17.0, with the free end exceeding the rest parts of the plate,

the vorticity begins to increase rapidly at the top end point, and a region of very concentrated vorticity forms

at t = 17.2 when the free end almost reaches its peak (Figs. 9(c) and (d)). In our animations, the vortex ap-

pears to shed when the free end reaches the peak. The corresponding isobars are shown in Fig. 10, from

which we see that the pressure differences across the plate act in such a way that they tend to straighten



Fig. 10. The pressure contours and the configurations of the plate at different times during around half a oscillatory period for d0 = 0.1

and ðqr;G;Re; Fr; ar;HÞ ¼ ð8; 100; 500; 0; 40; 1Þ. The magnitude of the pressure is indicated by the gray scale, with the brightest area

corresponding to the maximum pressure.
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the plate of any specific configuration and make it align with the streamwise direction. For example, the free

end parts at t = 16.6 and t = 16.8 are inclined with the streamwise direction, and then the pressure differences

there help to push them upwards (Figs. 10(a) and (b)); the middle parts (a little closer to the free end) at

t = 16.8 and t = 17.0 are moving upwards, and then the pressure differences there act to push them down-

wards (Figs. 10(b) and (c)). Since any parts of the plate (except the fixed point) oscillate sinusoidally with
time (i.e., travelling wave, a phenomenon that was also observed in the experiment of Zhang et al. [38]),

the pressure differences across the plate also change sinusoidally with time. Although, the pressure differ-

ences appear to straighten the configuration of the plate, they are expected to play an important role in

the self-sustained oscillation of the plate due to the inertial motion and elastic response of the plate.

Figs. 11–14 show that one can turn a flapping state into a stretched-straight state by decreasing qr or Re,
or increasing G or Fr (qr 6¼ 1) while keeping all other dimensionless parameters unchanged. Over the para-

meter range studied, the amplitude of the oscillation increases with increasing qr (Fig. 11), or decreasing Fr
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(Fig. 13) or G (Fig. 14), whereas it decreases a little from Re = 250 to Re = 500 (Fig. 12). The dimensionless

frequency (i.e., the Strouhal number St) increases with increasing Re (Fig. 12) or decreasing qr (Fig. 11) obvi-
ously (though not significantly), or with increasing G (Fig. 14) or decreasing Fr (Fig. 13) very slightly. Zhu

and Peskin [29] also observed a larger amplitude for a larger solid density and no-flapping for a neutrally

buoyant plate in their simulations.
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Fig. 15 shows the effects of the initial disturbance intensity d0 at ðqr;G;Re; Fr; ar;HÞ ¼ ð8; 100; 500;
0; 40; 1Þ. We see that the plates will eventually flap with the same amplitude and frequency, irrespective

of the initial disturbance intensity. For d0 = 0.001, the plate appears to keep at rest for a long time, and

it can be conceived that the rest state can remain even longer for a smaller d0, however, since the distur-

bance in an experimental laboratory can not be so small, we can say that the flapping state is the only stable
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Fig. 16. The vorticity contours and the configurations of the plate at (a) steady-state for the case of rigid-body, and (b) t = 10.0 and (c)

t = 18.8 for the case of flexible-body at d0 = 0.001 and ðqr;G;Re; Fr; ar;HÞ ¼ ð8; 100; 500; 0; 40; 1Þ. The vorticity increment for the

contours is 5.0.
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the plate remains at rest at the end of our simulation t = 40. ðqr;G;Re; Fr; ar;HÞ ¼ ð10; 100; 250; 0; 20; 2Þ. The vorticity increment for

the contours is 2.5.
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state for this case. A close scrutiny at the motion of the plate reveals that the seemingly stationary plate is

actually oscillating with a very small amplitude and with the same frequency as for the unsteady wake (Fig.

16(b)). By contrast, for a rigid body, the wake will become symmetrical and steady even if we initially im-
pose an unsymmetrical flow about the centerline. Therefore, the instability in the flow over a flexible body a

coupled instability between the flexible body and the flow, in the sense that the flow gives rise to the dis-

turbances on the plate, and in turn the oscillation of the plate results in stronger unsymmetrical wakes

(or even shedding of the vortices), as shown in Fig. 16.

Zhang et al. [38] observed that the increase in the dimensional filament length can lead a bi-stable state to

a single flapping state. We consider case of ðqr;G;Re; Fr; ar;HÞ ¼ ð8; 100; 250; 0; 20; 2Þ, which is resulted by

shortening the plate dimensional length by half while keeping all other dimensional parameters unchanged in

the above case. The system does exhibit two stable states: the plate for d0 = 0.2 begins to flap after released,
whereas the one for d0 = 0.01 remains at rest during our simulation time (of course except the initial stage), as

shown in Fig. 17. If we change qr = 8 to qr = 10, the same happens, and the visualization is shown in Fig. 18.

From Fig. 16(c), when the initial disturbance to the plate is very small, the amplification of the distur-

bances to the plate is mainly through the oscillation of the free end at early stage. If the free end of a plate is
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stable to small disturbances (this should be understood as the results of the response of the entire plate, not

the free end alone, considering the role of the density ratio), and then the plate can remain its rest state,

however, if the initial configuration disturbance is large, then the plate can extract sufficient energy from

the flow to sustain its oscillation since the initial large deformation of the plate can produce strongly unsym-

metrical fluid stress on the two sides of the plate (also from the vortex shedding), unlike the case of the
stretched-straight state (as compared in Fig. 18). In the experiment of Zhang et al. [38], vortex shedding

existed in the case of stretched-straight state, however, since the film was much thinner than the filament

(film thickness: 3–4 lm and the diameter of the filament: 0.15 mm), the disturbance from the shedding

of the Kármán-type vortices was still small (Gravity and surface tension may also help to stabilize the rest

state in the experiments). The enormous geometrical difference between the experiment and our model pre-

cludes our attempt to make any quantitative comparisons. A comparison between Figs. 9(b) and 18(a) indi-

cates that the most conspicuous bending part of the plate characterized by the convex surface (marked by A

and B in the figures) is shifted closer to the fixed end for a smaller ar. For ar = 20 and qr = 8, the position of
the convex surface was found almost the same despite its much smaller flapping amplitude, compared to the

case of qr = 10. The tendency is consistent with the experimental observation that the flapping motion of a

very long filament appeared to be limited to the free end region. Such a response of the plate with smaller ar
to the flow may be regarded as a reason why it is more difficult for the free end of a shorter stretched-

straight plate to bend under small disturbances and then more difficult for a flapping instability to occur.

As the dimensional length of the plate is shortened, we find that both dimensionless amplitude and fre-

quency of the flapping based on the plate length are reduced, from Figs. 11 and 17. The frequency is about

0.71 for ðqr;G;Re; Fr; ar;HÞ ¼ ð8; 100; 500; 0; 40; 1Þ, and about 0.42 for ðqr;G;Re; Fr; ar;HÞ ¼ ð8; 100;
250; 0; 20; 2Þ. The effect of the aspect ratio ar on the frequency is much more significant than caused by

any other parameters qr, Re, G and Fr (Figs. 11–14); it can be reasonably assumed that the effect of H
is insignificant for the present problems where the thickness of the plate is small compared to the channel

width. Therefore, the characteristic dimensionless frequency of this self-sustained oscillation system should

not be calculated using the length of the plate. If based on the thickness of the plate, the dimensionless fre-

quency decreases from 0.021 (�0.41/20) for ar = 20 to 0.018 (�0.71/40) for ar = 40. We see that this fre-

quency does not change much with the plate aspect ratio ar or the plate dimensional length, which is in

agreement with the experiments of Zhang et al. [38] where the initial decrease in the frequency was observed
after the onset of the flapping instability and then the frequency largely remained unchanged, as the length

of the filament was increased.

For both the fish-swimming problem and the self-sustained oscillation problem here, the flexible bodies

transport travelling waves backward, however, there exists difference in the velocity of the travelling wave:

for the fish-swimming case, the phase velocity is larger than the mainstream velocity, in contrast, for the

current problem, we notice that the velocity of the wave is smaller than the mainstream velocity. Corre-

spondingly, the thrust is produced and the reverse Kármán vortex street forms in the wake for the former

case [39], and the drag (which can be inferred from Fig. 10) and the Kármán vortex street (Fig. 9) are ob-
served for the problem here.
5. Conclusions

We have extended the distributed-Lagrange-multiplier/fictitious-domain (DLM/FD) formulation of Glo-

winski et al. [12] for the fluid/rigid-body interactions to deal with the fluid/flexible-body interactions by

replacing Newton�s equations of motion for the rigid body with the continuum equations for the general so-
lid material. For our computational scheme, a first-order accurate fractional step scheme is employed to

decouple the entire system into a fluid problem, a solid problem and a Lagrange multiplier problem, which

simplifies the computation substantially; the flow problem is solved with the projection method on
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half-staggered grids; the solid problem is solved with the Lagrangian finite element method and the Newton

iterative method; and the incompressibility of the material is implemented with the penalty function method.

The proposed method is applied to two typical fluid–structure interaction problems: the flow-driven

oscillation of a flexible plate along the flow direction and the self-sustained oscillation across the flow direc-

tion. The first test problem shows that the accuracy of our method is acceptable, despite the relatively poor
convergence behavior with the solid mesh, which is the main source of numerical errors in our scheme and

however is mainly caused by the difficulty in solving the solid problem alone. For the second problem, we

examine the effects of the dimensionless governing parameters on the flapping instability, and find that one

can turn a flapping state into a stretched-straight state by decreasing the density ratio or the Reynolds num-

ber, or increasing the dimensionless shear modulus or the Froude number (qr 6¼ 1) while keeping all other

dimensionless parameters unchanged. Over the parameter range studied, the amplitude of the oscillation

increases with increasing density ratio, or decreasing Froude number or shear modulus, whereas it is not

sensitive to the Reynolds number once the instability takes place. The dimensionless frequency (i.e., the
Strouhal number) increases with increasing Reynolds number or decreasing density ratio apparently

(though not significantly), or with increasing shear modulus or decreasing Froude number very slightly.

Our results confirm that the increase in the dimensional filament length alone can lead a bi-stable state

to a single flapping state, while keeping the dimensional frequency of the oscillation largely constant.

The most conspicuous bending part of the plate characterized by the convex surface with large curvature

is shifted closer to the fixed end for a shorter plate, which could be responsible for the observation that a

shorter plate is much more stable to small disturbances, allowing for the bi-stability phenomenon to take

place. Different from the fish-swimming problem, the self-sustained oscillation problem here is character-
ized by the observations that the velocity of the backward travelling wave is smaller than the mainstream

velocity and the Kármán vortex street forms in the wake.

Although, the method is implemented for the Newtonian fluid and the neo-Hookean elastic material in

the two-dimensional case, the extensions to other fluids such as viscoelastic fluids (Yu et al. [24]), other solid

materials and the three-dimensional case are straightforward.
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